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Introduction 

Let GLj(Z) be the group of 3 by 3 invertible matrices with integral coefficients, 
p a prime number, Fp the field with p elements, and 

Q, : GLJ(Z)-+GL3(FP) 

the reduction modulo p. The map r, induces morphisms of cohomology groups 
(with integral coefficients) 

rp* : H*(GL3(FP))-+H*(GL,(Z)). 

The purpose of this paper is to describe completely r;. 
Actually a presentation of H*(GL,(F,)) (resp. H*(GL,(Z))) is given in [l] and 

[5] (resp. [3]), and we give here an expression for the images of generators via r:. 
In Section 0, we describe the cohomology of GL#) and GL,(F,). In Section 1, we 
prove that r? is injective on 6-torsion. In Section 2, we study the reduction of r: 
to the p-torsion of H*(GL,(F,)). In Section 3, we study .$ on H*(GL,(F’), F,), 

when l#p. We also compute ri(@, where ei E Hz’(GLj(FP)), 1 tic 3, are the 
Chern classes of the Brauer lifting of the standard representation of GL,(F,). 

0. Some known results 

In this section, we sum up some of the results needed in the later sections. Let 
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H*(G) denote the cohomology ring of a discrete group G with coefficients 2. When 
XEH*(G), we write 1x1 the degree of x. 

0.1. The cohomology of SL#) and GL#) can be computed completely by using 
the reduction theory of positive definite real quadratic forms. 

Theorem 0.1 (cf. [3]). (i) H*(GL#)) is killed by multiplicc7tion by 12. 
(ii) Let G and G’ be two cyclic group of order three in GLJ(Z) which ate not 

conjugate to each other. Let E (tesp. E’) be a nontrivial element in H’(G) (tesp. 
H’(G’)). The map 

H*(GL3 (O(3) --) ff*Wt3,0H*(Wf3, 

is injective. Its image is generated by c2 and E”. 
(iii) Let H and H’ be two subgroups of SL3(Z) isomorphic to the dihedral group 

l;r, of eight elements and contained in rM#, To respectively (notations of [3]). Then 
the map 

is injective. 
Furthermore H*(SL3(Z)jc2, is generated by elements u!, u2, l - l , UT with 1 uI I= 

Iu2~=3, Iu3[=Iu41=4, IusI=5, and juJ=Iu,I=7. 

0.2. Let U be the group of upper triangular matrices in GL3(Fp>. It is a p-Sylow 
subgroup of GL,(F,), SO the map H*(GL3(FP))(,, ‘H*(U)(,, is injective. 

Theorem 0.2 [S]. (i) For p = 2 the ring H*(U) is generated by elements ~1, ~2, e, u 

with (y,I=ly2/=2. (el=3, lul=4. 
The subting H*(GL3(F2))(2, is generated by yI v, yf +y$ + v and e. 
(ii) Modulo its nilpotent elements, the ring H*(GL,(F3))(3) is generated by 

elements b,, (y, v12, (Y*v)~, y1 y2v, and yf + yf + v2 of respective degrees 4, 16 16 10 
and 12. 

0.3. Quillen described H*(GL3(Fq), F,) for any finite field Fq, where ! is a prime 
not dividing 4, and n 2 1 an integer. In our case he gets 

Theorem 0.3 [I]. (i) There are ring isomorphisms 

HYGL3 (Fph F3) = 
F3 I?21 @de2) when p = 2 (mod 3) 

F3 [PI, 22, t3] @A(e, , e2, e3) when p = 1 (mod 3) 

with /2il=2i and leil=2i- 1. 
(ii) The ring H*(GL,(F,), F2) is generated by eiements El,&, P3, el , e2, e3 such that 

IF, ] = 2i and I ej I = 2i - 1 (for relations see [I]). 
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Theorem 1. The homomorphism 

r; : H*(SL3(F&, --) H*(SL#Y)) 

is injective when I= 2 or 3, * > 0. 

Proof. For I = 2 we look at the subgroup H’= y4 of SL#Y) generated by 

(-i -p -b> and (8 -! -p>. 

It is easy to check that its image i;l’ in SLj(Fz) is still $, so it is a 2-Sylow sub- 
group of SL3(F2,. 

Therefore the restriction map 

H*(SL,(&)),,, -+H*(ij’) 

is injective and the theorem comes from the commutative diagram 

H*(R) + H*(H’) 

For 1=3, let G =X/32 be the subgroup of SL@) generated by 

It is easy to see that its image G in SL,(F,) is a 3-Sylow subgroup. The same 
argument as above shows that 

rz* : H*(% t&))(3) -+H*(=3 (2)) 

is injective. Cl 

2. The image of H*(GL3(FP)J,, 

We use the notation of Section 0. 

heorem 2. (i) For p = 3 we have 

r:(yf+y2+u)=P+d6, 
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and the other generators of H*(GLJ(F&) cIre mapped to zero by r$ 
(ii) For p = 2 we have 

r;(e) = u2, r,*(yf+yi+v)=ujt and r~(ylo)=u7* 

Proof. (i) Let G and G’ be the cyclic subgroups of SL#) generated by 

respectively. They are not conjugate in SLj(Z), so the map 

H*(GL3(Z)),3, +H*(G)@H”(G’) 

is injective (Theorem 0.1). The images G and G’ in SL3(F3) are conjugate to the 
groups generated by 

and 

The commutative diagram 

H*(GL~(FJ ))(3) -- H*GLdZ)) 

H*(@@H*(t?) - H*(G)@H*(G’) 

shows that it will be enough to study the restriction maps from GLJ(F~) to c and 
-I G. 

Let H*(G) =Z/3[e] and H*(G’) = Z/3[e’]. Since U contains G and e’, we can 
first study the map 

H*(U)-+H*(c)@H*(G’). 

Using [5, (1.2) and (1.3)], we have b2 1 G = yfyj 1 c =O, and we deduce that 

y, IB=E, y21G=vIG=bIG=0. 

Z,imilarly, 

yr 1 G’=E’, y,~G’=v~C’=bIC’=O. 

We deduce from this that r,*( yf + yg + v2) = &6 + E’~ and that the other generators 
of H*(GL3(F3))t31 map to zero. 

Notice that there are no nilpotents in H*(GL3(Z))(3J. 
(ii) Let HC& be the subgroup of SL3(Z) generated by 
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and H'c&,,~ the group generated by 

(-i -p -i) and (% -: -p). 

Using the fact that H’= I?‘= &I, we get (cf. [5, Theorem 5.41) 

ytu 1 H’=x,Xq, y~+yf+vIH’=$+x~ and elH’=.q, 

where x1, x2, x3, x4 are the generators of H*( P4) given in [3]. 
From this it follows that 

(notation of [3]). 

To compute H*(SLJ(&))Q, -+H*(&I)Q) 9 denote by j, (resp. j,) the inclusion of 
the group Z/22 generated by 

into I’.,‘.,‘(resp. I-~-J), and by cp (resp. q’) the inclusion of &(resp. &) into SL,(Z). 
We have [3] (~0’. j2)* = (~0 l j,)*. Composing this with r;, we get 

GO y*v [z/22=0, y:+yz+u(Z/2Z=t2 and elZ/2Z=O, 

where t E H2(Z/2Z) is the generator. 
Let 0 : .‘rb *Z/22 be the signature morphism. We have ci l jz = id. Therefore, in 

SL3(F,), we get b* i2= id. Furthermore rO= Y3, by [3, Lemma 01. By [3, Lemma 
81, the morphism 

J52*-I=a*: H*(Z/2Z) + H *( Y3)(2) 

is an isomorphism. I’vloreover, if we call y; the generator of H’(Qz) = Z/22, we 
have that o*(t) = y1 and ci*: H*(Z/2Z)-+H*(To)(2, is injective. Therefore 

r?= a*J’t* : H*(ro),2, -+H*(T*) 

is injective, and we have @‘m,T2 = r2 l (p’m j2. 
From the arguments above, we can evaluate 

From (a), we obtain 

(W ylv(ro=o, y~+yf+v~ro=yf and elT,=O. 
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Recall that the generators ~2, u3,u7 of H*(GL3(Z))(2) are chosen such that ~2 = ~1, 
u~=Y:+z~ and ~7 = z3 [n, Theorem 4(iv)]. 

The facts (a) and (b) imply 

r2*(e) = ~2, r,*(y~+y~+u)=u3 and $(ylv)=u7. Cl 

3. The image of Chern classes 

3.1. In this section, we fix a prime /= 2,3 and a prime p different from 1. We shall 
study the image via the reduction homomorphism r; : H*(CL3(FP))-+H*(GL3(Z)) 
of some classes ei E Hz’(GL3(FP))(,, defined as follows. Let F’ be an algebraic 
closure of Fp and Q : Fi; --Cx a fixed embedding. When G is a finite group, we 
denote by RJG) (resp. R(G)) the Grothendieck group of representations of G over 
a field k (resp. the complex field C). To the embedding Q, we attach a Brauer lifting 
@: Rk(G)-+R(G) for any finite extension k of Fp [2, 18.4]. By definition, 
ci E H2’(GL3(FP)) will be the Chern classes of the Brauer lifting of the natural 
representation of GL3(FP). 

We also define c; E H2’(GL3(Z)),,, to be the /-torsion part of the Chern classes of 
the embedding GL,(Z) -+GL,(Q=). 

Lemma 3.1. We have r,*@) = q. 

Proof. Let G be a subgroup of GL3(Z) whose order is a power of 1. We shall study 
the restriction of Ci and r,*(E;) to H2’(G). Since the cohomology of GL&Z) is 
detected by such groups (see Theorem O.l), the lemma will follow from the 
equalities 

C, 1 G = r,*(tTi) 1 G. 

Let K be a local field with characteristic 0 and residue field k, a finite extension 
of Fp such that the order of G divides the order of k. Let Q: K+C be a fixed 
embedding of K into IG and Q : /ix -+KX +Cx the associate lifting of the units of k 
into Cx. (Remark that Ei does not aepend on the choice of this embedding.) Then 
the inclusion homomorphism G -‘CL,(Z) +GL3(@) factors through GA 
GL#)A GL,(C). We have 

Ci 1 G = j*e *(Ci). 

Let rK be the decomposition homomorphism RK{G)+Rk(G). Then we know by [2, 
15.51 that rk is an isomorphism. Denote by @ : Rk(G)+RK(G) its inverse. We have 
@ =Q l tP, where Q is the embedding RK(G)+R(G) defined by @([Ml) = [M@K d=] 
(cf. [2, 18.41). We denote by In the embedding GL3(FP)-+GL3(k). We have 

r,*@) 1 G = r,*(ci(e l @(In 1 G))) 
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=citQ* @(In l rP 1 G)) =Ci(&P(r&)))) 

=c,(e* j)=ci 1 G. El 

3.2. We shall find an expression of the Chern classes ci =I$@~) in terms of the 
generators of H*(GLJ(Z)). Let us fix some notations. The 3-torsion H*(GL3(Z)),,, 
of H*(GLj(Z)) is generated by classes e2 and E’~ defined in Theorem O.l(ii). The 

2-torsion H*(GL3(Z)),,r of H*(GLj(Z)) is generated by classes ul, w2, . . . , u7 in 
H*(SLJ(Z))(2, (Theorem O.l(iii)) and by the class USE H’(GLJ(Z)) which is 
obtained from the determinant 

det* : H2(Z/2Z)-+H2(GL,(Z)). 

Theorem 3.2. (i) For I= 3, we have 

r;(q) = I$(&) = 0, 

(ii) For /=2, we have 

r,*(i’z) = -E2 - El?. 

r,*@ I= uo, r,*(f2) = -u3 - uj, and r,*(C3) = u f + u$ 

Proof. (i) We get r;(Q = r;(C3) =0 by noticing that H”‘(GL3(Z)),J, = 0 when n = 2 
and 6. 

Let x : G *Z/32 be an isomorphism and 2 = exp(2ziX/3) : G -+a3’ the complex 
character attached to x. 

The generator ‘E E H2(G) can be defined as the first Chern class of ,i. On the 
other hand a generator of G has eigenvaks 1, exp(2zi/3) and exp(47ci/3). So we get 

c2 1 G = c,(~)c,(~-‘) = -c,(x)~ = -E’. 

The same argument gives c2 1 G’= -ef2. 
(ii) Since the generator of H2(Z/2Z) is the first Chern class of the character 

Z/22 MIX, we have 

cl = cl (det) = uo. 

To evaluate c2 and c3, consider first the dihedral group of order eight Y+ Its c(:jrn- 
plex irreducible representations are the trivial representation, three nontrivial cjne- 
dimensional representations, and one irreducilple representation cp of dimlension 
two. Therefore any faithful representation w : P4-+SL&II) must be conjugate to 
q@det((p). We get 

Q(W) = cr (co)cr (det ~9 + M(P) = cr (v)’ + C&P), 

c3m = Cl (cp)c2((Ph 

Let a and b be generators 
can realize q~ by taking 

0 1 
a = ( > -1 0 

of P4 submitted to the relations a’ = b’ = (a@‘= 1. We 

and b= 
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We see that det(a) = 1 and det(b) = - 1. If we use the notations of 13, Proposition 

2(ii)], we have 

cl (p) = cl (det p) = x2. 

0n the other hand, we have, from 131, 

Q(q) = A$ -1-/.&x; + vx4 

and we want to compute il, p and v. Let x be a character of order four of the group 
2/42=(a) generated by a. We have pI(a)=XOX_’ and so c2(q#a)= -C,(X)‘. 

Let SE H2((a>) be a generator. Then we have c2(q) ) (a) = --s2. As shown in [3], 

x1 1 (a) = 2s, x21(4)=0 and XqI(a)=s’. 

So we must have v=-1. 
Consider the restriction of c2(cp) to (a2,b). Let MJ~ and w;:(a2,b)-+CX be the 

characters such that w;(a2) = -1, w;(b)= 1, w;(a’)= 1, w;(b)= -1 and wi =ci(w;), 
~2 = cl(w;). We know from [3] that I-f+((a’, b)) is generated by the elements wl, w2 
and a class w3 E H3((a2, b)) submitted to the relations 

Since 
2w, = 2w, ‘2W3 = wf + wi M5(wr + w2) = 0. 

a2,(-’ O 
\ 0 

and b= 
-1 

we have 

c2(cp)l(a2, b)=cl(w~)cI(w~w~)= wf+ w1 w2. 

On the other hand, by [3], we know 

x1 1 <a’, b) = 0, x2 ] (a2, b) = ~2, x41(a2,b)=wf+ w~wp 

So we get jf=O. 
Finally we restrict c2(& to (ab). It is trivial that C&J) = 0. If &H2((ab)) is the 

generator, we have 

xi 1 (ab) =x2 1 (ab} = t and x4 1 (ab) = 0. 

So we get J.=p=O. 
In conclusion we have proved that c2(cp) = -x4 and for any faithful1 representa- 

tion IV: I/, -+SL,(@) we have 

Q(W) =x22 -x,9 c’J(w) =x2x& 

We recalled in Theorem O.l(iii) that H*(SL3(Z))(2, is detected by a subgroup 
H= Q4 contained in r0 = *Y4 and another group H’= p4 contained in rMf = .Y4. We 
choose the inclusions H-+To and H’-+& to be i, in the notations of [3, Pro- 
position 31. From [3, Theorem 4(iv)], we have 

UI IH=x3, U2lH=O, u3 1 H=x;, u41H_x:+x;+x4, 
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u5 1 H=x,x3, &j (H=x,Xq, u,iH=O 

and 
u,IH'=~,IH'=u~(H'=u~IH'=O, 

u2 1 H’=x3, u3 1 H’=x~+x;, ul ] H’=x*x~. 

Put c2 = AZ+ +pu4 and restrict to H and H’. We get 

xi-xq =c2(w) 1 H=Ax;+p(x; +x:+x,), 

x&x&j = c2(w) 1 H’ = A(x; +x4). 

Therefore c2 = -u3 - 114. 
Put c3 = Au: +,uui + vu6 + gu7 and restrict it to H. We get 

x4x2- -c3(y/)I H=Ax;+vx,x~. 

Since x: ~~2x4, we get A= 1 and v=O. 
Restrict to H’. We get 

x4x2 =c3(~)IH’=~x;+0xtx4. 

So we get p = 1 and o= 0. Finally we have gotten c3 = uf + u;. II 

3.3. The inclusion of groups GL3(Z)+GL3(C) induces a map between their classi- 
fying spaces 

(p : BGL3(Z)+BGL3(a=)‘OP = BU3. 

Let ci E H2’(BU3), 15 i < 3, be the usua? Chern classes. From Lemma 2,l and 
Theorem 2.2 above we get 

Corollary (see also [4]). The kernel of 

*. v l 

is generated by 

3.4. Finally we 

H’(BU3)+H*(GL3(Z)) 

2cr, 12c2 and 2c3. 

shall describe the map 

rp* : H*(GLd&J, F,PH*W&), F/l 

when I#p. When XE H*(G), we denote by x its image in H*(G,F,). We call 
& : H*(G, F$+H*‘*(G)(,, the Bockstein morphism attached to the exact sequence 
of coefficients 

0+&&F,-0. 

By definition, [ 11, the classes & E H2’(GL3(Fp), F,) satirfy & = ?;. So r,*(C,) = $(?,) = cl 
is determined by Theorem 3.2 above. 

To compute r,*(e;) we first remark that, by [ 1, Lemma 51, we have 
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b,(eJ = ((g’ - l)/l)q. Therefore 

‘-1 
P&%$)) = ‘T_ ci * 

The map &:H 2i- ‘(GL#), J;;)-+H2’(GL3(Z)) is inject&e, therefore the equality 
above is enough to compute r,*(ei). We get 

Theorem 3.4. (i) For / = 3 we have r,*(el) = r,*(e3) = 0 and 

$I$) = 
=0 when p= 1 or 8 (mod 9), 

#O when p = 2,$, 5,7 (mod 9). 

To compute r,*(ei) when 1=2 we use the same method as in Theorem 3.2. We 
just indicate the main steps. We have 

H*(GL,(Z), F2) = H*(Z/2Z, F2)@H*(SLj(Z), Fz) 

and the map 

H*(SL3(Z), F,)-+H*(H, F,)@H*(H’, F2) 

is injective. Recall that H=H’= g4. 

Lemma 3.4. H*(P4,F2)=J;2[sI,s2, w]/(s:+s1s2), with Is,/ = fs2i = 1, Iwl=2. 

Assuming that 9, is generated by a and 6, submitted to the relations 
a4 = b2 = (ab)2 = 1, we take s1 (a) =s2(b) = 1, s,(b) = s2(a) = 0. The element w is 
characterized by the equalities pZ( w) =x3 and x3 = w.s2. We have w1 = sf, x2 = s$ 

x3 = ws2, x4= w2. 

Proposition 3.4. The algebra H*(GL3(Z), F2) is generated by ui E H’(Z/22, F2) and 
elements u;, ui, . . . , ui of respective degrees 2,2,3,3,3,3 whose restrictions to H and 
H’ are given by the following table: 

X 6 4 4 4 4 4 

XlH w+s; 9; + s; M’S7 0 WSI 0 

x[H' w+s,2 w+s; 0- WS2 0 WSI 

To check this proposition we first prove that uf is in H*(GL#), Fz), using [3, 
Theorem 4(E)]. Then we show that when Ui is a generator of H*(GL3(Z)), its 
reduction Bi is in the algebra generated by the elements uf (compute in H and H’). 
Finally we see that the elements pz(Ui) generate Ker(H*(GL,(Z))z H*(GL3(Z))) 
as a module over H*(GL3(Z)). q 

. (ii) For 1=2 andp4 (ms 
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r,*(eJ=O, 1 his3. 

For / = 2 and p = 3 (mod 4) we have 

r,*(q) = & 

r:(e2) = u; + u;, 
r,*(e3) = u;u; + u;u;. 

Sk&h of the proof. To get r,*(er) we restal .t this class to Z/22 and Else [ 1, 
Proposition 3(ii)J. 

The representations H-+GL#$) and H’-+GL,(F,) are isomorphic to w= 
yz@det cp as in Theorem 3.2. By [l, Proposition 3(ii)], we have 

ez(W) = e2(~) and eW = c2(dp)el (det p) + e2(p)cl (det t&. 

Using [ 1, Proposition 3(ii)], we get 

edv)=eddet (p)=+(p- 1)~~. 

By restricting e2(cp) to the subgroups (a), (a’,b) and (ab) of I/~ we get 

e&O=t(p- 1)~s~. We deduce 

e2W=HP- B)ws2 and e3(r& = +(p - l)(w2s2 + ws:). 

Since ei(v) = r,*(ei) 1 H= r;(ei) / H’, these relations detf%: nine r,*@~). 3 
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