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Introduction

Let GL3(Z) be the group of 3 by 3 invertible matrices with integral coefficients,
p a prime number, F), the field with p elements, and

r,: GLy(Z)~GL4(F),)

the reduction modulo p. The map r, induces morphisms of cohomology groups
(with integral coefficients)

ry: H{GL,(F,))~ H*(GL3(2)).

The purpose of this paper is to describe completely r;.

Actually a presentation of H*(GL;3(F},)) (resp. H*(GL3(Z))) is given in [1] and
[5] (resp. [3]), and we give here an expression for the images of generators via r,.
In Section 0, we describe the cohomology of GL;(Z) and GL;(F}). In Section 1, we
prove that r¥ is injective on 6-torsion. In Section 2, we study the reduction of r;:‘
to the p-torsion of H*(GL3(F},)). In Section 3, we study .r;," on H*(GL;(F)), F)),
when /#p. We also compute r,(¢;), where ¢; e H¥(GL3(F,)), 1<i<3, are the
Chern classes of the Brauer lifting of the standard representation of GL;(F,).

0. Some known results
In this section, we sum up some of the resuits needed in the later sections. Let
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H*(G) denote the cohomology ring of a discrete group G with coefficients Z. When
xe H*(G), we write |x| the degree of x.

0.1. The cohomology of SL;(Z) and GL;(Z) can be computed completely by using
the reduction theory of positive definite real quadratic forms.

Theorem 0.1 (cf. [3]). (i) H*(GL;(2)) is killed by multiplication by 12.
(ii) Let G and G’ be two cyclic group of order three in GL3(Z) which are not

conjugate to each other. Let ¢ (resp. ') be a nontrivial element in H*(G) (resp.
H*G")). The map

H*(GL3(Z2))3) = HXG) 3@ H¥(G')g3

is injective. Its image is generated by €* and &'

(iii) Let H and H' be two subgroups of SLy(Z) isomorphic to the dihedral group
%4 of eight elements and contained in I'yy., I'p respectively (notations of [3)). Then
the map

H*(SLy(Z))— H*(H) O H*(H')y)
is injective.
Furthermore H*(SL;(Z)),) is generated by elements u,,u,,...,u; with luy| =
luy| =3, |uz| =|us| =4, |us|=5, and |ug|=|u,|=17.

0.2. Let U be the group of upper triangular matrices in GL;3(F),). It is a p-Sylow
subgroup of GL;(F}), so the map H*(GL3(F})),) = H*(U),, is injective.

Theorem 0.2 [5]. (i) For p=2 the ring H*(U) is generated by elements y,, y;,e,v
with | yi|=|y2|=2. |e|=3, |v]|=4.

The subring H*(GL3(F,)), is generated by y,v, y}+y%+v and e.

(ii) Modulo its nilpotent elements, the ring H*(GL;3(F3))s) is generated by

elements by, (y,v)% (¥20)% y1 Y20, and y$ + y$ + v? of respective degrees 4, 16, 16, 10
and 12.

0.3. Quillen described H*(GL1(F,), F)) for any finite field F,, where / is a prime
not dividing g, and n=1 an integer. In our case he gets

Theorem 0.3 {1]. (i) There are ring isomorphisms

F;[6]1®A(e h =2 d3
HHGLy(F. F) = { D0 e o )
F3[¢,,65,6,)®A(ey,ey,e3) when p=1 (mod 3)
with || =2i and |e;|=2i—1.
(ii) The ring H*(GL;3(F)), F,) is generated by elements ¢,,¢é,, 65, e,, e, e; such that
|&;|=2i and |e;|=2i—1 (for relations see [1}).



Cohomological behaviour of GL, 221
1. The reduction modulo two

Theorem 1. The homomorphism
ry s H*(SL;y(Fy)), — H*(SLy(2))

is injective when 1=2 or 3, *>0.

Proof. For / =2 we look at the subgroup H'= 2, of SL;(Z) generated by

-1 -1 -1 0 -1 0
0 0 1 and 0 0 -1
0 1 0 1 1 1

It is easy to check that its image A’ in SL;(F,) is still 74, so it is a 2-Sylow sub-
group of SL,(F).
Therefore the restriction map

H*(SL3(F3))2 —H*H’)
is injective and the theorem comes from the commutative diagram

H*(SL}(Fz»(z) _ H*(SL3(Z))

—

H*(h)
For /=3, let G=2/3Z be the subgroup of SL;(Z) generated by

9 -1 0
0O o6 -1]).
1 0 0
It is easy to see that its image G in SL;(F;) is a 3-Sylow subgrcup. The same
argument as above shows that
ry s H¥SL3(F,))3,— H*(SL3(2))

is injective, [

H*(H')

2. The image of H*(GL;(F),)),
We use the notation of Section 0.

Theorem 2. (i) For p=3 we have

riOS+y5+v)=eb+¢’8,
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and the other generators of H*(GL3(F3))) are mapped to zero by ry.
(ii) For p=2 we have

. * 2 2 . * .
’2*(6’)=u2s R(yi+y:+v)=u;, and ry{yv)=u.

Proof. (i) Let G and G’ be the cyclic subgroups of SL;(Z) generated by

0 -1 0 1 0 0
0 0 -1 and 0 -1 -11.
1 0 0 0 1 0

respectively. They are not conjugate in SL;(Z), so the map
H*(GL;(2))3) ~HXG)DHXG")

is injective (Theorem 0.1). The images G and G’ in SL,(F;) are conjugate to the
groups generated by

I 11 /1 1 0
010 and \0 1 01
0 01 00 l/

The commutative diagram

H*(GL3(F3 ))(3) —_ H*(GLS(Z))

-~

HYG)®H*(G")

HYG)®H*(G")

shows that it will be enough to study the restriction maps from GL;(F;) to G and
G

Let H¥(G)=Z/3[e] and H*(G’)=Z/3[¢’]. Since U contains G and G’, we can
first study the map

H¥U)->H*G)DH*G').

Using [5, (1.2) and (1.3)], we have b*|G=y}y}|G=0, and we deduce that
»|G=e  »|G=v|G=b|G=0.

Similarly,
n|G'=¢, y|G=v|G'=b|G=0.

We deduce from this that r{(y§ + y§ + v2) =%+ £’6 and that the other generators
of H*(GL;(F3))3) map to zero.

Notice that there are no nilpotents in H *(GL5(Z Na)-

(ii) Let HC I} be the subgroup of SL.3(Z) generated by



Cohomological behaviour of GL, 223

/-1 -1 =1\ /0 ~1 0\
K 0 0 1) and (0 1 —1).
0 1 0 1 1 1
Using the fact that H'=H'= U, we get (cf. [5, Theorem 5.4])
yolH =x;x;,  yi+yi+v|H'=x}+x, and e|H'=x;,

wheora v. v. v. v. ara tha o
YVRIVAW Afsngy Iy g GiV v §

From this it follows tha

anaratarc onf H*( )
WwilWwi GALVLI D Vi 4 \—’

iven in 31
- 4 i 1~]-

gl‘b ALR
ylhp=2z3,  yi+y3+v|ly=2 and e|ly=z
(notation of [3]).
To compute H*(SL;(F3))3) > H*(I'p)2), denote by j; (resp. j;) the inclusion of
the group Z/2Z generated by
0 -1 0
-1 0 0\
0 o -1/
into I (resp. I'p), and by ¢ (resp. ¢’) the inclusion of Iy, (resp. I's) into SL;(Z).
We have [3] (¢’ j»)*=(¢- j;)*. Composing this with ry, we get
(a) »|Z/2Z=0, y'+y3+v|Z/2Z=t* and e|Z/2Z=0,

where te H*(Z/2Z) is the generator.

Let 6: .7,—Z/2Z be the signature morphism. We have g - j,=id. Therefore, in
SL;(F,), we get - j,=id. Furthermore I'p= %;, by [3, Lemma 0]. By [3, Lemma
8], the morphism

-

=% HYZ/2Z) - H*( %)y

is an isomorphism. Moreover, if we call y, the generator of HZ(:/4)(2)=Z /2Z, we
have that g*(t)=y, and g*: HX(Z/2Z)— H*(Ip)3) is injective. Therefore

ri=o*jy: H*(Ip)a ~H*(I'p)

is injective, and we have ¢’ hb=ry- ¢’ 5.
From the arguments above, we can evaluate

P K - . ’ ¥ » %k *
rﬁ"-(p’*=0*'12’"¢'*=0*'12*'¢ * 'r2=0'*'J| '(0*'1'2.
From (a), we obtain

(b) yl|lp=0, yi+yi+v|lp=y} and e|l,=0.
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Recall that the generators u,, ¥y, u; of H*(GL3(Z))(;) are chosen such that u, =2z,
uy=y? +z, and u,=2z; [3, Theorem 4(iv)].
The facts (a) and (b) imply

rie)=uy, r¥(yi+yi+v)=u; and r¥(yw)=u;. 0O

3. The image of Chern classes

3.1. In this section, we fix a prime /=2, ? and a prime p different from /. We shall
study the image via the reduction homomorphism r;," : H¥(GL;3(F,))— H*(GL3(Z))
of some classes EieHz"(GL3(Fp))(,, defined as follows. Let Fp be an algebraic
closure of F, and Q:F-;‘ —+C* a fixed embedding. When G is a finite group, we
denote by R,(G) (resp. R(G)) the Grothendieck group of representations of G over
a field k (resp. the complex field C). To the embedding o, we attach a Brauer lifting
¢ :R(G)—R(G) for any finite extension k of F, [2, 18.4]. By definition,
c",eHzi(GL3(Fp)) will be the Chern classes of the Brauer lifting of the natural
representation of GL3(F),).

We also define ¢, € H*(GL3(Z)),; to be the /-torsion part of the Chern classes of
the embedding GL;(Z)—GL;(0).

Lemma 3.1. We have r;(¢) =c;.

Proof. Let G be a subgroup of GL;(Z ).whose order is a power of /. We shall study
the restriction of ¢; and rl’,"(c“‘,) to H%(G). Since the cohomology of GL3(Z) is

detected by such groups (se¢ Theorem 0.1), the lemma will follow from the
equalities

¢,|G=r}e)|G.

Let K be a local field with characteristic 0 and 1esidue field k, a finite extension
of F, such that the order of G divides the order of k. Let ¢: K—C be 2 fixed
embedding of K into C and o: k¥ = K> —C* the associate lifting of the units of
into C*. (Remark that ¢ does not aepend on the choice of this embedding.) Then
the inclusion homomorphism G—GL;(Z)—=GL4(C) factors through G—L-
GL,(K)—%> GL,(C). We have

¢;|G=j*o*(c).
Let ri be the decomposition homomorphism R (G)— R;(G). Then we know by [2,
15.5] that ry is an isomorphism. Denote by & : R, (G)— Rg(G) its inverse. We have

¢=0- D, where g is the embedding Ry (G)—R(G) defined by o({M])=[M®x C]
(cf. [2, 18.4]). We denote by In the embedding GL;(F,)—GL;(k). We have

rX@)| G=r¥ci(o- o(In|G)))
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=ci(e- ®(In-r,| G)) = i@ (/)
=cle-j)=¢;|G. T
3.2. We shall find an expression of the Chern classes c;=r;(¢;) in terms of the
generators of H*(GL;(Z)). Let us fix some notations. The 3-torsion H*(GL3(Z)),
of H*(GL,(Z)) is generated by classes &2 and &% defined in Theorem 0.1(ii). The
2-torsion H*(GL3(Z));) of H*(GL(Z)) is generated by classes u,,,...,u; in

H*(SL;(Z)) (Theorem O0.1{iii)) and by the class uoeHZ(GL3(Z)) which is
obtained from the determinant

det*: HX(Z/2Z)— H*(GL+(2)).

Theorem 3.2. (i) For =3, we have
rp(€1) =ry(¢) =0, ";(52)=—82—8'2.
(ii) For [=2, we have

ry (€)= ug, ry(@)=—uy—uy, and r}(c)=ui+us.

Proof. (i) We get r,(¢;)=r;(¢3) =0 by noticing that H"(GL;(Z));3,=0 when n=2
and 6.

Let x: G—Z/3Z be an isomorphism and §=exp(2nix/3): G—C* the complex
character attached to y.

The generator ‘¢ e H*(G) can be defined as the first Chern class of 7. On the
other hand a generator of G has eigenvalues 1, exp(27i/3) and exp(47i/3). So we get

Q| G=ai(De (i) = —cy(0)? = —¢
The same argument gives ¢,|G’'= —¢"%
(ii) Since the generator of H*(Z/2Z) is the first Chern class of the character
Z/2Z-C*, we have
c;=c(det) = uy.

To evaluate ¢, and c;, consider first the dihedral group of order eight ;. Its com-
plex irreducible representations are the trivial representation, three nontrivial cne-
dimensional representations, and one irreducible representation ¢ of dimension
two. Therefore any faithful representation y: &, —SL;(C) must be conjugate to
p@det(p). We get

(W) = ¢y ()i (det ) + c2(9) = ¢1(9)* + c2(0),
c3(9) = c1{p)ca ().

Let a and b be generators of 7, submitted to the relations a*=b"=(ab)*=1. We
can realize ¢ by taking

0 1 -1 0
a-(_l O) and b—( 0 l>'
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We see that det(a) =1 and det(b) = —1. If we use the notations of [3, Proposition
2(i)], we have
c1(9) = ci(det @) = x,.
On the other hand, we have, from [3],
Cx(9) = Ax} + ux3 + vx,

and we want to compute A, # and v. Let y be a character of order four of the group
Z/4Z ={a) generated by a. We have (pl(a)= 1®x ! and so cz(qp)l(a)= -—cl(x)z.
Let se H*({(a)) be a generator. Then we have cz((p)l(a)= --s2. As shown in [3],

x |<ay=2s, X3|¢a)=0 and X3 |(@y=s2.

So we must have v=-1.

Consider the restriction of c,(p) to <@ b). Let w] and w;:{a% b)—C> be the
characters such that wj(a®)=—1, w|(b) =1, wy(@®)=1, wi(b)= -1 and w, =c,(w),
wy=c,(w;). We know from [3) that H *({d? b)) is generated by the elements w;, w,
and a class wy;e H 3((az, b)) submitted to the relations

2w, = 2wy =2wy = wi + w wy(w; + wy) =0.
2 (-1 O d b=(—1 0)
“TVo ~l> an 0 1)’

c2(9) [<a?, bY=c;(w))c; (Wi w3) = w}+ wywy.

Since

we have

On the other hand, by [3], we know
X I(az,b)=0, le(az,b)=w2, X4I(az,b>= W]z* Wy w,.

So we get u=0.
Finally we restrict c,(¢) to {ab). It is trivial that c,(¢)=0. If t e H*({(ab)) is the
generator, we have

x; [<aby=x,|<aby=1t and x,|<ab)=0.

So we get A=u=0.
In conclusion we have proved that ¢,(¢) = —x4 and for any faithfull representa-
tion y: 74 —SL;(C) we have

W =xi-x, W) =xx,.

We recalled in Theorem 0.1(iii) that H*(SL;(Z)),) is detected by a subgroup
H= %, contained in I'y= %, and another group H'= 7, contained in I, =.%;. We
choose the inclusions H—Ip and H'—I,, to te i; in the notations of [3, Pro-
position 3]. From [3, Theorem 4(iv)], we have

uy|[H=x3, w,|H=0, ws|H=x}, us|H=x}+x}+x,,
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u5IH=x1X3, u6|H=X]X4, u7iH=O
and
u |H' =uy|H'=us|H' = ug| H'=0,

ule’=x3, u3|H’=x4+x§, u7|H'=x,x4.
Put ¢, =Au;+ uu, and restrict to H and H'. We get

X3 — x4= (W) | H=Ax} + p(c} + x5+ x)),

X3 —xy =0, (W) | H' = A03 + xy).

Therefore ¢, = —u3— uy.
Put ¢, = Au? + pu3 + vug + ou; and restrict it to H. We get

xX4Xp = c3(w) | H=Ax3 +vx, x4

Since x3 =x,x;, we get A=1 and v=0.
Restrict to H'. We get

x4x2=c3(w)lH’=,ux§+ax,x4.
So we get #=1 and o =0. Finally we have gotten c;=ui+u3. [
3.3. The inclusion of groups GL3;(Z)—GL;(C) induces a map between their classi-
fying spaces

¢ : BGL;(Z)—~BGL;(C)'°? = BU;.
Let c;e H¥(BU;), 1=<i<3, be the usua! Chern classes. From Lemma 2.1 and
Theorem 2.2 above we get
Corollary (see also [4]). The kernel of

¢*: H¥(BU3)~ H*(GL3(2))

is generated by 2c¢,, 12¢, and 2c;.

3.4. Finally we shall describe the map
ry : H¥(GL;(F),), F)— H*(GL3(Z2), F)

when /#p. When xe H*(G), we denote by ¥ its image in H*(G,F;). We call
B H*(G,F)—H (G )y the Bockstein morphism attached to the exact sequence
of coefficients

x/
0_’2__’2"1:1 —=0.

By definition, [11, the classes ¢ € H¥(GL3(F,), F)) satisfy & =¢. So rj(¢) =r;(€) =¢,
is determined by Theorem 3.2 above.
To compute r,’,"(ei) we first remark that, by [l, Lemma 5], we have
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Bi(e) =((p' = 1)/)c;. Therefore
p-1
l

The map £ : H¥~ (GL3(Z), F3)— H*(GL4(2)) is injectj"ve, therefore the equality
above is enough to compute r,(e;). We get

Bi(ry(e)) =

C;.

Theorem 3.4. (i) For /=3 we have r;(e;)=r;(e;)=0 and

=0 when p=1 or 8 (mod9),

* —
rp(€2) {;tO when p=2,4,5,7 (mod 9).

To compute r;(e;) when /=2 we use the same method as in Theorem 3.2. We
just indicate the main steps. We have

H*(GL4(Z), F,)=H*(Z/2Z,F,)® H*(SL3(Z2), F3)
and the map
H*(SL;(Z), F,)~H*(H,F,)®OH*(H', F;)

is injective. Recall that H=H'= 7,.
Lemma 3.4. H*(74, F,) =F5 s, 53, Wl/(st +5,5;), with |s|]|=1s,]=1, |w|=2.

Assuming that %, is generated by a and b, submiited to the relations
a*=b2=(abP =1, we take s;(@)=s,(b)=1, 5,(b)=s5(a)=0. The element w is
characterized by the equalities B,(W)=x; and %;=ws,. We have %, =s?, %, =53,
Xy = WSy, Xy= W

Proposition 3.4. The algebra H*(GL;(Z), F,) is generated by uye H'(Z /22, F,) and
elements uj,u,, ..., ug of respective degrees 2,2,3,3, 3,3 whose restrictions to H and
H' are given by the following table:

x uy u; u; u, ug Ug
b

x|H w+s3 st+s3 ws, 0 ws, 0

x|H' w+s2 w+s3 0 ws, 0 ws,

To check this proposition we first prove that &/ is in H*(GL;(Z), F,), using [3,
Theorem 4(ii)]. Then we show that when u; is a generator of H*(GL;(Z)), its
reduction 4 is in the algebra generated by the elements u; (compute in H and H’).
Finally we see that the elements #,(u;) generate Ker(H*(GL;(Z ))—-)g» H*(GL;(2)))
as a module over H*(GL;(Z)). O

Theorem 3.4. (ii) For /=2 and p=1 (mod 4) we have
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rye)=0, 1=is<3.
For =2 and p=3 (mod 4) we have
r;,"(el)=u6,
rp(e;) =uy+uy,
rp(es) =ujus+ ujug.
Sketch of the proof. To get r;,"(el) we restr1 * this class to Z/2Z and use [1,
Proposition 3(ii)].

The representations H-—GL3(F,) and H’'—GL;(F,) are isomorphic to y=
p@det ¢ as in Theorem 3.2. By [1, Proposition 3(ii)], we have

e(w)=e(¢p) and e3(w)=cy(p)e (det p) + ey (p)c;(det p).
Using [1, Proposition 3(ii)], we get

el(@)=e(det p) =1(p - Ds,.

By restricting e,(¢) to the subgroups <(a){a%b) and (ab) of 74 we get
e (¢)=1(p— ws,. We deduce

e(W)=4(p-Dws, and e3(w)=4(p- (Wi, + ws3).

Since ¢;(v)=r,(e) | H=rj(e) | H’, these relations det:: nine ry(e). O
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