COHOMOLOGICAL BEHAVIOUR OF THE REDUCTION MODULO A PRIME OF GL $\left.\mathbf{H}^{(} \boldsymbol{Z}\right)$

Christophe SOULE
Dépt. Mathématique et Informatique, Université Paris VII, 5è ét., Tour 45-55, 2 place Jussieu, 75251 Paris Cedex 05, France
Michishige TEZUKA
Department of Mathematics, Tokyo Institute of Technology, Ohokayama, Meguroku, Tokyo, Japan
Nobuaki YAGITA
Department of Mathematics, Musashi Institute of Technology, Tamazutumi, Setagayaku, Tokyo, Japan

Communicated by K.W. Gruenberg
Received 15 February 1983

Introduction

Let $\mathrm{GL}_{3}(Z)$ be the group of 3 by 3 invertible matrices with integral coefficients, p a prime number, F_{p} the field with p elements, and

$$
r_{p}: \mathrm{GL}_{3}(Z) \rightarrow \mathrm{GL}_{3}\left(F_{p}\right)
$$

the reduction modulo p. The map r_{p} induces morphisms of cohomology groups (with integral coefficients)

$$
r_{p}^{*}: H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right)\right) \rightarrow H^{*}\left(\mathrm{GL}_{3}(Z)\right)
$$

The purpose of this paper is to describe completely r_{p}^{*}.
Actually a presentation of $H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right)\right)$ (resp. $\left.H^{*}\left(\mathrm{GL}_{3}(Z)\right)\right)$ is given in [1] and [5] (resp. [3]), and we give here an expression for the images of generators via r_{p}^{*}. In Section 0, we describe the cohomology of $\mathrm{GL}_{3}(Z)$ and $\mathrm{GL}_{3}\left(F_{p}\right)$. In Section 1, we prove that r_{2}^{*} is injective on 6-torsion. In Section 2, we study the reduction of r_{p}^{*} to the p-torsion of $H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right)\right)$. In Section 3, we study r_{p}^{*} on $H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right), F_{i}\right)$, when $l \neq p$. We also compute $r_{p}^{*}\left(\tilde{c}_{i}\right)$, where $\tilde{c}_{i} \in H^{2 i}\left(\mathrm{GL}_{3}\left(F_{p}\right)\right), 1 \leq i \leq 3$, are the Chern classes of the Brauer lifting of the standard representation of $\mathrm{GL}_{3}\left(F_{p}\right)$.

0. Some known results

In this section, we sum up some of the results needed in the later sections. Let
$H^{*}(G)$ denote the cohomology ring of a discrete group G with coefficients Z. When $x \in H^{*}(G)$, we write $|x|$ the degree of x.
0.1. The cohomology of $\mathrm{SL}_{3}(Z)$ and $\mathrm{GL}_{3}(Z)$ can be computed completely by using the reduction theory of positive definite real quadratic forms.

Theorem 0.1 (cf. [3]). (i) $H^{*}\left(\mathrm{GL}_{3}(Z)\right)$ is killed by multiplication by 12.
(ii) Let G and G^{\prime} be two cyclic group of order three in $\mathrm{GL}_{3}(Z)$ which are not conjugate to each other. Let ε (resp. ε^{\prime}) be a nontrivial element in $H^{2}(G)$ (resp. $H^{2}\left(G^{\prime}\right)$). The map

$$
H^{*}\left(\mathrm{GL}_{3}(Z)\right)_{(3)} \rightarrow H^{*}(G)_{(3)} \oplus H^{*}\left(G^{\prime}\right)_{(3)}
$$

is injective. Its image is generated by ε^{2} and $\varepsilon^{\prime 2}$.
(iii) Let H and H^{\prime} be two subgroups of $\mathrm{SL}_{3}(Z)$ isomorphic to the dihedral group \mathscr{I}_{4} of eight elements and contained in $\Gamma_{M^{\prime}}, \Gamma_{O}$ respectively (notations of [3]). Then the map

$$
H^{*}\left(\mathrm{SL}_{3}(Z)_{(2)} \rightarrow H^{*}(H)_{(2)} \oplus H^{*}\left(H^{\prime}\right)_{(2)}\right.
$$

is injective.
Furthermore $H^{*}\left(\mathrm{SL}_{3}(Z)\right)_{(2)}$ is generated by elements $u_{1}, u_{2}, \ldots, u_{7}$ with $\left|u_{1}\right|=$ $\left|u_{2}\right|=3,\left|u_{3}\right|=\left|u_{4}\right|=4,\left|u_{5}\right|=5$, and $\left|u_{6}\right|=\left|u_{7}\right|=7$.
0.2. Let U be the group of upper triangular matrices in $\mathrm{GL}_{3}\left(F_{p}\right)$. It is a p-Sylow subgroup of $\mathrm{GL}_{3}\left(F_{p}\right)$, so the $\operatorname{map} H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right)\right)_{(p)} \rightarrow H^{*}(U)_{(p)}$ is injective.

Theorem 0.2 [5]. (i) For $p=2$ the ring $H^{*}(U)$ is generated by elements y_{1}, y_{2}, e, v with $\left|y_{1}\right|=\left|y_{2}\right|=2 .|e|=3,|v|=4$.

The subring $H^{*}\left(\mathrm{GL}_{3}\left(F_{2}\right)\right)_{(2)}$ is generated by $y_{1} v, y_{1}^{2}+y_{2}^{2}+v$ and e.
(ii) Modulo its nilpotent elements, the ring $H^{*}\left(\mathrm{GL}_{3}\left(F_{3}\right)\right)_{(3)}$ is generated by elements $b_{1},\left(y_{1} v\right)^{2},\left(y_{2} v\right)^{2}, y_{1} y_{2} v$, and $y_{1}^{6}+y_{2}^{6}+v^{2}$ of respective degrees $4,16,16,10$ and 12.
0.3. Quillen described $H^{*}\left(\mathrm{GL}_{3}\left(F_{q}\right), F_{l}\right)$ for any finite field F_{q}, where l is a prime not dividing q, and $n \geq 1$ an integer. In our case he gets

Theorem 0.3 [1]. (i) There are ring isomorphisms

$$
H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right), F_{3}\right)= \begin{cases}F_{3}\left[\hat{c}_{2}\right] \otimes \Lambda\left(e_{2}\right) & \text { when } p \equiv 2(\bmod 3) \\ F_{3}\left[\hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}\right] \otimes \Lambda\left(e_{1}, e_{2}, e_{3}\right) & \text { when } p \equiv 1(\bmod 3)\end{cases}
$$

with $\left|\hat{c}_{i}\right|=2 i$ and $\left|e_{i}\right|=2 i-1$.
(ii) The ring $H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right), F_{2}\right)$ is generated by elements $\hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}, e_{1}, e_{2}, e_{3}$ such that $\left|\hat{c}_{i}\right|=2 i$ and $\left|\epsilon_{i}\right|=2 i-1$ (for relations see [1]).

1. The reduction modulo two

Theorem 1. The homomorphism

$$
r_{2}^{*}: H^{*}\left(\mathrm{SL}_{3}\left(F_{2}\right)\right)_{(l)} \rightarrow H^{*}\left(\mathrm{SL}_{3}(Z)\right)
$$

is injective when $l=2$ or $3, *>0$.
Proof. For $l=2$ we look at the subgroup $H^{\prime} \simeq y_{4}$ of $\mathrm{SL}_{3}(Z)$ generated by

$$
\left(\begin{array}{rrr}
-1 & -1 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

It is easy to check that its image \bar{H}^{\prime} in $\mathrm{SL}_{3}\left(F_{2}\right)$ is still $\mathscr{\iota}_{4}$, so it is a 2-Sylow subgroup of $\mathrm{SL}_{3}\left(F_{2}\right)$.

Therefore the restriction map

$$
H^{*}\left(\mathrm{SL}_{3}\left(F_{2}\right)\right)_{(2)} \rightarrow H^{*}\left(\bar{H}^{\prime}\right)
$$

is injective and the theorem comes from the commutative diagram

For $l=3$, let $G \simeq Z / 3 Z$ be the subgroup of $\mathrm{SL}_{3}(Z)$ generated by

$$
\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right)
$$

It is easy to see that its image G in $\mathrm{SL}_{3}\left(F_{2}\right)$ is a 3 -Sylow subgroup. The same argument as above shows that

$$
r_{2}^{*}: H^{*}\left(\mathrm{SL}_{3}\left(F_{2}\right)\right)_{(3)} \rightarrow H^{*}\left(\mathrm{SL}_{3}(Z)\right)
$$

is injective.

2. The image of $H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right)\right)_{(p)}$

We use the notation of Section 0 .

Theorem 2. (i) For $p=3$ we have

$$
r_{3}^{*}\left(y_{1}^{6}+y_{2}^{6}+v\right)=\varepsilon^{6}+\varepsilon^{\prime 6},
$$

and the other generators of $H^{*}\left(\mathrm{GL}_{3}\left(F_{3}\right)\right)_{(3)}$ are mapped to zero by r_{3}^{*}.
(ii) For $p=2$ we have

$$
r_{2}^{*}(e)=u_{2}, \quad r_{2}^{*}\left(y_{1}^{2}+y_{2}^{2}+v\right)=u_{3}, \quad \text { and } \quad r_{2}^{*}\left(y_{1} v\right)=u_{7} .
$$

Proof. (i) Let G and G^{\prime} be the cyclic subgroups of $\mathrm{SL}_{3}(Z)$ generated by

$$
\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & -1 \\
0 & 1 & 0
\end{array}\right) .
$$

respectively. They are not conjugate in $\mathrm{SL}_{3}(Z)$, so the map

$$
H^{*}\left(\mathrm{GL}_{3}(Z)\right)_{(3)} \rightarrow H^{*}(G) \oplus H^{*}\left(G^{\prime}\right)
$$

is injective (Theorem 0.1). The images \bar{G} and \bar{G}^{\prime} in $\mathrm{SL}_{3}\left(F_{3}\right)$ are conjugate to the groups generated by

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The commutative diagram

shows that it will be enough to study the restriction maps from $\mathrm{GL}_{3}\left(F_{3}\right)$ to \bar{G} and \bar{G}^{\prime}.
Let $H^{*}(G)=Z / 3[\varepsilon]$ and $H^{*}\left(G^{\prime}\right)=Z / 3\left[\varepsilon^{\prime}\right]$. Since U contains \bar{G} and \bar{G}^{\prime}, we can first study the map

$$
H^{*}(U) \rightarrow H^{*}(\widetilde{G}) \oplus H^{*}\left(\bar{G}^{\prime}\right)
$$

Using [5, (1.2) and (1.3)], we have $b^{2}\left|\bar{G}=y_{1}^{2} y_{2}^{2}\right| \bar{G}=0$, and we deduce that

$$
y_{1}\left|\bar{G}=\varepsilon, \quad y_{2}\right| \bar{G}=v|\bar{G}=b| \bar{G}=0 .
$$

Similarly,

$$
y_{1}\left|\bar{G}^{\prime}=\varepsilon^{\prime}, \quad y_{2}\right| \bar{G}^{\prime}=v\left|\bar{G}^{\prime}=b\right| \bar{G}^{\prime}=0 .
$$

We deduce from this that $r_{3}^{*}\left(y_{1}^{6}+y_{2}^{6}+v^{2}\right)=\varepsilon^{6}+\varepsilon^{\prime 6}$ and that the other generators of $H^{*}\left(\mathrm{GL}_{3}\left(F_{3}\right)\right)_{(3)}$ map to zero.

Notice that there are no nilpotents in $H^{*}\left(\mathrm{GL}_{3}(Z)\right)_{(3)}$.
(ii) Let $H \subset \Gamma_{O}$ be the subgroup of $\mathrm{SL}_{3}(Z)$ generated by

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \text { and }\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

and $H^{\prime} \subset \Gamma_{M^{\prime}}$ the group generated by

$$
\left(\begin{array}{rrr}
-1 & -1 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

Using the fact that $H^{\prime} \simeq \bar{H}^{\prime}=U$, we get (cf. [5, Theorem 5.4])

$$
y_{1} v\left|H^{\prime}=x_{1} x_{4}, \quad y_{1}^{2}+y_{2}^{2}+v\right| H^{\prime}=x_{2}^{2}+x_{4} \quad \text { and } \quad e \mid H^{\prime}=x_{3},
$$

where $x_{1}, x_{2}, x_{3}, x_{4}$ are the generators of $H^{*}\left(x_{4}\right)$ given in [3].
From this it follows that

$$
y_{1} v\left|\Gamma_{M^{\prime}}=z_{3}, \quad y_{1}^{2}+y_{2}^{2}+v\right| \Gamma_{M^{\prime}}=z_{2} \quad \text { and } \quad e \mid \Gamma_{M^{\prime}}=z_{1}
$$

(notation of [3]).
To compute $H^{*}\left(\mathrm{SL}_{3}\left(F_{2}\right)\right)_{(2)} \rightarrow H^{*}\left(\Gamma_{O}\right)_{(2)}$, denote by j_{1} (resp. j_{2}) the inclusion of the group $Z / 2 Z$ generated by

$$
\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

into $\Gamma_{M^{\prime}}\left(\right.$ resp. $\left.\Gamma_{O}\right)$, and by φ (resp. φ^{\prime}) the inclusion of $\Gamma_{M^{\prime}}$ (resp. Γ_{O}) into $\mathrm{SL}_{3}(Z)$. We have [3] $\left(\varphi^{\prime} \cdot j_{2}\right)^{*}=\left(\varphi \cdot j_{1}\right)^{*}$. Composing this with r_{2}^{*}, we get

$$
\begin{equation*}
y_{1} v\left|Z / 2 Z=0, \quad y_{1}^{2}+y_{2}^{2}+v\right| Z / 2 Z=t^{2} \quad \text { and } \quad e \mid Z / 2 Z=0, \tag{a}
\end{equation*}
$$

where $t \in H^{2}(Z / 2 Z)$ is the generator.
Let $\sigma: \mathscr{F}_{4} \rightarrow Z / 2 Z$ be the signature morphism. We have $\sigma \cdot j_{2}=$ id. Therefore, in $\mathrm{SL}_{3}\left(F_{2}\right)$, we get $\bar{\sigma} \cdot \bar{j}_{2}=$ id. Furthermore $\bar{\Gamma}_{O} \simeq \mathscr{Y}_{3}$, by [3, Lemma 0]. By [3, Lemma 8], the morphism

$$
\bar{J}_{2}^{*-1}=\bar{\sigma}^{*}: H^{*}(Z / 2 Z) \rightarrow H^{*}\left(\mathscr{f}_{3}\right)_{(2)}
$$

is an isomorphism. Moreover, if we call y_{1}^{\prime} the generator of $H^{2}\left(/_{4}\right)_{(2)}=Z / 2 Z$, we have that $\sigma^{*}(t)=y_{1}$ and $\sigma^{*}: H^{*}(Z / 2 Z) \rightarrow H^{*}\left(\Gamma_{O}\right)_{(2)}$ is injective. Therefore

$$
r_{2}^{*} \simeq \sigma^{*} \bar{j}_{2}^{*}: H^{*}\left(\bar{\Gamma}_{O}\right)_{(2)} \rightarrow H^{*}\left(\Gamma_{O}\right)
$$

is injective, and we have $\bar{\varphi}^{\prime} \cdot \bar{i}_{2}=r_{2} \cdot \varphi^{\prime} \cdot j_{2}$.
From the arguments above, we can evaluate

$$
r_{2}^{*} \cdot \bar{\varphi}^{\prime *}=\sigma^{*} \cdot \bar{j}_{2}^{*} \cdot \bar{\varphi}^{\prime *}=\sigma^{*} \cdot j_{2}^{*} \cdot \varphi^{\prime *} \cdot r_{2}^{*}=\sigma^{*} \cdot j_{1}^{*} \cdot \varphi^{*} \cdot r_{2}^{*}
$$

From (a), we obtain

$$
\begin{equation*}
y_{1} v\left|\Gamma_{O}=0, \quad y_{1}^{2}+y_{2}^{2}+v\right| \Gamma_{O}=y_{1}^{2} \quad \text { and } e \mid \Gamma_{O}=0 . \tag{b}
\end{equation*}
$$

Recall that the generatots u_{2}, u_{3}, u_{7} of $H^{*}\left(\mathrm{GL}_{3}(Z)\right)_{(2)}$ are chosen such that $u_{2}=z_{1}$, $u_{3}=y_{1}^{2}+z_{2}$ and $u_{7}=z_{3}$ [3, Theorem 4(iv)].

The facts (a) and (b) imply

$$
r_{2}^{*}(e)=u_{2}, \quad r_{2}^{*}\left(y_{1}^{2}+y_{2}^{2}+v\right)=u_{3} \quad \text { and } \quad r_{2}^{*}\left(y_{1} v\right)=u_{7}
$$

3. The image of Chern classes

3.1. In this section, we fix a prime $l=2,3$ and a prime p different from l. We shall study the image via the reduction homomorphism $r_{p}^{*}: H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right)\right) \rightarrow H^{*}\left(\mathrm{GL}_{3}(Z)\right)$ of some classes $\tilde{c}_{i} \in H^{2 i}\left(\mathrm{GL}_{3}\left(F_{p}\right)\right)_{(l)}$ defined as follows. Let \bar{F}_{p} be an algebraic closure of F_{p} and $\varrho: \tilde{F}_{p}^{\times} \rightarrow \mathbb{C}^{\times}$a fixed embedding. When G is a finite group, we denote by $R_{k}(G)$ (resp. $R(G)$) the Grothendieck group of representations of G over a field k (resp. the complex field \mathbb{C}). To the embedding ϱ, we attach a Brauer lifting $\phi: R_{k}(G) \rightarrow R(G)$ for any finite extension k of F_{p} [2, 18.4]. By definition, $\tilde{c}_{i} \in H^{2 i}\left(\mathrm{GL}_{3}\left(F_{p}\right)\right)$ will be the Chern classes of the Brauer lifting of the natural representation of $\mathrm{GL}_{3}\left(F_{p}\right)$.

We also define $c_{i} \in H^{2 i}\left(\mathrm{GL}_{3}(Z)\right)_{(l)}$ to be the l-torsion part of the Chern classes of the embedding $\mathrm{GL}_{3}(Z) \rightarrow \mathrm{GL}_{3}(\mathbb{C})$.

Lemma 3.1. We have $r_{p}^{*}\left(\tilde{c}_{i}\right)=c_{i}$.
Proof. Let G be a subgroup of $\mathrm{GL}_{3}(Z)$ whose order is a power of l. We shall study the restriction of c_{i} and $r_{p}^{*}\left(\tilde{c}_{i}\right)$ to $H^{2 i}(G)$. Since the cohomology of $\mathrm{GL}_{3}(Z)$ is detected by such groups (see Theorem 0.1), the lemma will follow from the equalities

$$
c_{i}\left|G=r_{p}^{*}\left(\tilde{c}_{i}\right)\right| G .
$$

Let K be a local field with characteristic 0 and residue field k, a finite extension of F_{p} such that the order of G divides the order of k. Let $\varrho: K \rightarrow \mathbb{C}$ be a fixed embedding of K into \mathbb{C} and $\varrho: k^{\times} \rightarrow K^{\times} \rightarrow \mathbb{C}^{\times}$the associate lifting of the units of k into \mathbb{C}^{\times}. (Remark that \tilde{c}_{i} does not depend on the choice of this embedding.) Then the inclusion homomorphism $G \rightarrow \mathrm{GL}_{3}(Z) \rightarrow \mathrm{GL}_{3}(\mathbb{C})$ factors through $G \xrightarrow{j}$ $\mathrm{GL}_{3}(K) \xrightarrow{\varrho} \mathrm{GL}_{3}(\mathbb{C})$. We have

$$
c_{i} \mid G=j^{*} \varrho^{*}\left(c_{i}\right) .
$$

Let r_{K} be the decomposition homomorphism $R_{K}(G) \rightarrow R_{k}(G)$. Then we know by [2, 15.5] that r_{k} is an isomorphism. Denote by $\Phi: R_{k}(G) \rightarrow R_{K}(G)$ its inverse. We have $\phi=\varrho \cdot \Phi$, where ϱ is the embedding $R_{K}(G) \rightarrow R(G)$ defined by $\varrho([M])=\left[M \otimes_{K} \mathbb{C}\right]$ (cf. [2, 18.4]). We denote by In the embedding $\mathrm{GL}_{3}\left(F_{p}\right) \rightarrow \mathrm{GL}_{3}(k)$. We have

$$
r_{p}^{*}\left(\tilde{c}_{i}\right) \mid G=r_{p}^{*}\left(c_{i}(\varrho \cdot \Phi(\operatorname{In} \mid G))\right)
$$

$$
\begin{aligned}
& =c_{i}\left(\varrho \cdot \Phi\left(\operatorname{In} \cdot r_{p} \mid G\right)\right)=c_{i}\left(\varrho\left(\phi\left(r_{K}(j)\right)\right)\right) \\
& =c_{i}(\varrho \cdot j)=c_{i} \mid G .
\end{aligned}
$$

3.2. We shall find an expression of the Chern classes $c_{i}=r_{p}^{*}\left(\tilde{c}_{i}\right)$ in terms of the generators of $H^{*}\left(\mathrm{GL}_{3}(Z)\right)$. Let us fix some notations. The 3-torsion $H^{*}\left(\mathrm{GL}_{3}(Z)\right)_{(3)}$ of $H^{*}\left(\mathrm{GL}_{3}(Z)\right)$ is generated by classes ε^{2} and $\varepsilon^{\prime 2}$ defined in Theorem $0.1(\mathrm{ii})$. The 2-torsion $H^{*}\left(\mathrm{GL}_{3}(Z)\right)_{(2)}$ of $H^{*}\left(\mathrm{GL}_{3}(Z)\right)$ is generated by classes $u_{1}, u_{2}, \ldots, u_{7}$ in $H^{*}\left(\mathrm{SL}_{3}(Z)\right)_{(2)}$ (Theorem $0.1(\mathrm{iii})$) and by the class $u_{0} \in H^{2}\left(\mathrm{GL}_{3}(Z)\right)$ which is obtained from the determinant

$$
\operatorname{det}^{*}: H^{2}(Z / 2 Z) \rightarrow H^{2}\left(\mathrm{GL}_{3}(Z)\right)
$$

Theorem 3.2. (i) For $l=3$, we have

$$
r_{p}^{*}\left(\tilde{c}_{1}\right)=r_{p}^{*}\left(\tilde{c}_{3}\right)=0, \quad r_{p}^{*}\left(\tilde{c}_{2}\right)=-\varepsilon^{2}-\varepsilon^{\prime 2} .
$$

(ii) For $l=2$, we have

$$
r_{p}^{*}\left(\tilde{c}_{1}\right)=u_{0}, \quad r_{p}^{*}\left(\tilde{c}_{2}\right)=-u_{3}-u_{4}, \quad \text { and } \quad r_{p}^{*}\left(\tilde{c}_{3}\right)=u_{1}^{2}+u_{2}^{2} .
$$

Proof. (i) We get $r_{p}^{*}\left(\tilde{c}_{1}\right)=r_{p}^{*}\left(\tilde{c}_{3}\right)=0$ by noticing that $H^{n}\left(\mathrm{GL}_{3}(Z)\right)_{(3)}=0$ when $n=2$ and 6.

Let $\chi: G \rightarrow Z / 3 Z$ be an isomorphism and $\tilde{\chi}=\exp (2 \pi \mathrm{i} \chi / 3): G \rightarrow \mathbb{C}^{\times}$the complex character attached to χ.

The generator $\varepsilon \in H^{2}(G)$ can be defined as the first Chern class of \therefore. On the other hand a generator of G has eigenvalues $1, \exp (2 \pi \mathrm{i} / 3)$ and $\exp (4 \pi \mathrm{i} / 3)$. So we get

$$
c_{2} \mid G=c_{1}(\tilde{\chi}) c_{1}\left(\tilde{\chi}^{1}\right)=-c_{1}(\chi)^{2}=-\varepsilon^{2} .
$$

The same argument gives $c_{2} \mid G^{\prime}=-\varepsilon^{\prime 2}$.
(ii) Since the generator of $H^{2}(Z / 2 Z)$ is the first Chern class of the character $Z / 2 Z \rightarrow \mathbb{C}^{\times}$, we have

$$
c_{1}=c_{1}(\operatorname{det})=u_{0} .
$$

To evaluate c_{2} and c_{3}, consider first the dihedral group of order eight \varkappa_{4}. Its complex irreducible representations are the trivial representation, three nontrivial onedimensional representations, and one irreducille representation φ of dimension two. Therefore any faithful representation $\psi: /_{4} \rightarrow \mathrm{SL}_{3}(\mathbb{C})$ must be conjugate to $\varphi \oplus \operatorname{det}(\varphi)$. We get

$$
\begin{aligned}
& c_{2}(\psi)=c_{1}(\varphi) c_{1}(\operatorname{det} \varphi)+c_{2}(\varphi)=c_{1}(\varphi)^{2}+c_{2}(\varphi) \\
& c_{3}(\varphi)=c_{1}(\varphi) c_{2}(\varphi)
\end{aligned}
$$

Let a and b be generators of g_{4} submitted to the relations $a^{4}=b^{2}=(a b)^{2}=1$. We can realize φ by taking

$$
a=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

We see that $\operatorname{det}(a)=1$ and $\operatorname{det}(b)=-1$. If we use the notations of [3, Proposition 2(ii)], we have

$$
c_{1}(\varphi)=c_{1}(\operatorname{det} \varphi)=x_{2} .
$$

On the other hand, we have, from [3],

$$
c_{2}(\varphi)=\lambda x_{1}^{2}+\mu x_{2}^{2}+v x_{4}
$$

and we want to compute λ, μ and v. Let χ be a character of order four of the group $Z / 4 Z=\langle a\rangle$ generated by a. We have $\varphi \mid\langle a\rangle=\chi \oplus \chi^{-1}$ and so $c_{2}(\varphi) \mid\langle a\rangle=-c_{1}(\chi)^{2}$.

Let $s \in H^{2}(\langle a\rangle)$ be a generator. Then we have $c_{2}(\varphi) \mid\langle a\rangle=--s^{2}$. As shown in [3],

$$
x_{1}\left|\langle a\rangle=2 s, \quad x_{2}\right|\langle a\rangle=0 \quad \text { and } \quad x_{4} \mid\langle a\rangle=s^{2} .
$$

So we must have $v=-1$.
Consider the restriction of $c_{2}(\varphi)$ to $\left\langle a^{2}, b\right\rangle$. Let w_{1}^{\prime} and $w_{2}^{\prime}:\left\langle a^{2}, b\right\rangle \rightarrow \mathbb{C}^{\times}$be the characters such that $w_{1}^{\prime}\left(a^{2}\right)=-1, w_{1}^{\prime}(b)=1, w_{2}^{\prime}\left(a^{2}\right)=1, w_{2}^{\prime}(b)=-1$ and $w_{1}=c_{1}\left(w_{1}^{\prime}\right)$, $w_{2}=c_{1}\left(w_{2}^{\prime}\right)$. We know from [3] that $H^{*}\left(\left\langle a^{2}, b\right\rangle\right)$ is generated by the elements w_{1}, w_{2} and a class $w_{3} \in H^{3}\left(\left\langle a^{2}, b\right\rangle\right)$ submitted to the relations

$$
2 w_{1}=2 w_{2}=2 w_{3}=w_{3}^{2}+w_{1} w_{2}\left(w_{1}+w_{2}\right)=0
$$

Since

$$
a^{2}=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

we have

$$
c_{2}(\varphi) \mid\left\langle a^{2}, b\right\rangle=c_{1}\left(w_{1}^{\prime}\right) c_{1}\left(w_{1}^{\prime} w_{2}^{\prime}\right)=w_{1}^{2}+w_{1} w_{2} .
$$

On the other hand, by [3], we know

$$
x_{1}\left|\left\langle a^{2}, b\right\rangle=0, \quad x_{2}\right|\left\langle a^{2}, b\right\rangle=w_{2}, \quad x_{4} \mid\left\langle a^{2}, b\right\rangle=w_{1}^{2}+w_{1} w_{2} .
$$

So we get $\mu=0$.
Finally we restrict $c_{2}(\varphi)$ to $\langle a b\rangle$. It is trivial that $c_{2}(\varphi)=0$. If $t \in H^{2}(\langle a b\rangle)$ is the generator, we have

$$
x_{1}\left|\langle a b\rangle=x_{2}\right|\langle a b\rangle=t \quad \text { and } \quad x_{4} \mid\langle a b\rangle=0 .
$$

So we get $\lambda=\mu=0$.
In conclusion we have proved that $c_{2}(\varphi)=-x_{4}$ and for any faithfull representation $\psi: /_{4} \rightarrow \mathrm{SL}_{3}(\mathbb{C})$ we have

$$
c_{2}(\psi)=x_{2}^{2}-x_{4}, \quad c_{3}(\psi)=x_{2} x_{4}
$$

We recalled in Theorem 0.1 (iii) that $H^{*}\left(\mathrm{SL}_{3}(Z)\right)_{(2)}$ is detected by a subgroup $H=\mathscr{I}_{4}$ contained in $\Gamma_{O}=\mathscr{S}_{4}$ and another group $H^{\prime}=\mathscr{I}_{4}$ contained in $\Gamma_{M^{\prime}}=\mathscr{S}_{4}$. We choose the inclusions $H \rightarrow \Gamma_{O}$ and $H^{\prime} \rightarrow \Gamma_{M^{\prime}}$ to te i_{1} in the notations of [3, Proposition 3]. From [3, Theorem 4(iv)], we have

$$
u_{1}\left|H=x_{3}, \quad u_{2}\right| H=0, \quad u_{3}\left|H=x_{1}^{2}, \quad u_{4}\right| H=x_{1}^{2}+x_{2}^{2}+x_{4}
$$

$$
u_{5}\left|H=x_{1} x_{3}, \quad u_{6}\right| H=x_{1} x_{4}, \quad u_{7} \mid H=0
$$

and

$$
\begin{aligned}
& u_{1}\left|H^{\prime}=u_{4}\right| H^{\prime}=u_{5}\left|H^{\prime}=u_{6}\right| H^{\prime}=0, \\
& u_{2}\left|H^{\prime}=x_{3}, \quad u_{3}\right| H^{\prime}=x_{4}+x_{2}^{2}, \quad u_{7} \mid H^{\prime}=x_{1} x_{4} .
\end{aligned}
$$

Put $c_{2}=\lambda u_{3}+\mu u_{4}$ and restrict to H and H^{\prime}. We get

$$
\begin{aligned}
& x_{2}^{2}-x_{4}=c_{2}(\psi) \mid H=\lambda x_{1}^{2}+\mu\left(x_{1}^{2}+x_{2}^{2}+x_{4}\right) \\
& x_{2}^{2}-x_{4}=c_{2}(\psi) \mid H^{\prime}=\lambda\left(x_{2}^{2}+x_{4}\right)
\end{aligned}
$$

Therefore $c_{2}=-u_{3}-u_{4}$.
Put $c_{3}=\lambda u_{1}^{2}+\mu u_{2}^{2}+\nu u_{6}+\sigma u_{7}$ and restrict it to H. We get

$$
x_{4} x_{2}=c_{3}(\psi) \mid H=\lambda x_{3}^{2}+v x_{1} x_{4}
$$

Since $x_{3}^{2}=x_{2} x_{4}$, we get $\lambda=1$ and $v=0$.
Restrict to H^{\prime}. We get

$$
x_{4} x_{2}=c_{3}(\psi) \mid H^{\prime}=\mu x_{3}^{2}+\sigma x_{1} x_{4} .
$$

So we get $\mu=1$ and $\sigma=0$. Finally we have gotten $c_{3}=u_{1}^{2}+u_{2}^{2}$.
3.3. The inclusion of groups $\mathrm{GL}_{3}(Z) \rightarrow \mathrm{GL}_{3}(\mathbb{C})$ induces a map between their classifying spaces

$$
\varphi: \mathrm{BGL}_{3}(Z) \rightarrow \mathrm{BGL}_{3}(\mathbb{C})^{\mathrm{top}}=\mathrm{BU}_{3}
$$

Let $c_{i} \in H^{2 i}\left(\mathrm{BU}_{3}\right), 1 \leq i \leq 3$, be the usual Chern classes. From Lemma 2.1 and Theorem 2.2 above we get

Corollary (see also [4]). The kernel of

$$
\varphi^{*}: H^{*}\left(\mathrm{BU}_{3}\right) \rightarrow H^{*}\left(\mathrm{GL}_{3}(Z)\right)
$$

is generated by $2 c_{1}, 12 c_{2}$ and $2 c_{3}$.
3.4. Finally we shall describe the map

$$
r_{p}^{*}: H^{*}\left(\mathrm{GL}_{3}\left(F_{p}\right), F_{l}\right) \rightarrow H^{*}\left(\mathrm{GL}_{3}(Z), F_{l}\right)
$$

when $l \neq p$. When $x \in H^{*}(G)$, we denote by \bar{x} its image in $H^{*}\left(G, F_{l}\right)$. We call $\beta_{l}: H^{*}\left(G, F_{l}\right) \rightarrow H^{*+1}(G)_{(l)}$ the Bockstein morphism attached to the exact sequence of coefficients

$$
0 \rightarrow Z \xrightarrow{\times l} Z \rightarrow F_{l} \rightarrow 0 .
$$

By definition, [1], the classes $\hat{c}_{i} \in H^{2 i}\left(\mathrm{GL}_{3}\left(F_{p}\right), F_{l}\right)$ satisfy $\hat{c}_{i}=\overline{\tilde{c}}_{i}$. So $r_{p}^{*}\left(\hat{c}_{i}\right)=\overline{r_{p}^{*}\left(\bar{c}_{i}\right)}=\bar{c}_{i}$ is determined by Theorem 3.2 above.

To compute $r_{p}^{*}\left(e_{i}\right)$ we first remark that, by [1, Lemma 5], we have
$\beta_{l}\left(e_{i}\right)=\left(\left(p^{i}-1\right) / l\right) c_{i}$. Therefore

$$
\beta_{l}\left(r_{p}^{*}\left(e_{i}\right)\right)=\frac{p^{i}-1}{l} c_{i}
$$

The map $\beta_{3}: H^{2 i-1}\left(\mathrm{GL}_{3}(Z), F_{3}\right) \rightarrow H^{2 i}\left(\mathrm{GL}_{3}(Z)\right)$ is injective, therefore the equality above is enough to compute $r_{p}^{*}\left(e_{i}\right)$. We get

Theorem 3.4. (i) For $l=3$ we have $r_{p}^{*}\left(e_{1}\right)=r_{p}^{*}\left(e_{3}\right)=0$ and

$$
r_{p}^{*}\left(e_{2}\right)= \begin{cases}=0 & \text { when } p \equiv 1 \text { or } 8(\bmod 9) \\ \neq 0 & \text { when } p \equiv 2,4,5,7(\bmod 9)\end{cases}
$$

To compute $r_{p}^{*}\left(e_{i}\right)$ when $l=2$ we use the same method as in Theorem 3.2. We just indicate the main steps. We have

$$
H^{*}\left(\mathrm{GL}_{3}(Z), F_{2}\right)=H^{*}\left(Z / 2 Z, F_{2}\right) \otimes H^{*}\left(\mathrm{SL}_{3}(Z), F_{2}\right)
$$

and the map

$$
H^{*}\left(\mathrm{SL}_{3}(Z), F_{2}\right) \rightarrow H^{*}\left(H, F_{2}\right) \oplus H^{*}\left(H^{\prime}, F_{2}\right)
$$

is injective. Recall that $H \simeq H^{\prime} \simeq \mathscr{I}_{4}$.
Lemma 3.4. $H^{*}\left(f_{4}, F_{2}\right)=F_{2}\left[s_{1}, s_{2}, w\right] /\left(s_{1}^{2}+s_{1} s_{2}\right)$, with $\left|s_{1}\right|=\left|s_{2}\right|=1,|w|=2$.
Assuming that I_{4} is generated by a and b, submitted to the relations $a^{4}=b^{2}=(a b)^{2}=1$, we take $s_{1}(a)=s_{2}(b)=1, s_{1}(b)=s_{2}(a)=0$. The element w is characterized by the equalities $\beta_{2}(w)=x_{3}$ and $\bar{x}_{3}=w s_{2}$. We have $\bar{x}_{1}=s_{1}^{2}, \bar{x}_{2}=s_{2}^{2}$, $\bar{x}_{3}=w s_{2}, \bar{x}_{4}=w^{2}$.

Proposition 3.4. The algebra $H^{*}\left(\mathrm{GL}_{3}(Z), F_{2}\right)$ is generated by $u_{0}^{\prime} \in H^{1}\left(Z / 2 Z, F_{2}\right)$ and elements $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{6}^{\prime}$ of respective degrees $2,2,3,3,3,3$ whose restrictions to H and H^{\prime} are given by the following table:

x	u_{1}^{\prime}	u_{2}^{\prime}	u_{3}^{\prime}	u_{4}	u_{5}^{\prime}	u_{6}^{\prime}
$x \mid H$	$w+s_{2}^{2}$	$s_{1}^{2}+s_{2}^{2}$	$w s_{2}$	0	$w s_{1}$	0
$x \mid H^{\prime}$	$w+s_{2}^{2}$	$w+s_{2}^{2}$	0	$w s_{2}$	0	$w s_{1}$

To check this proposition we first prove that u_{i}^{\prime} is in $H^{*}\left(\mathrm{GL}_{3}(Z), F_{2}\right)$, using [3, Theorem 4(ii)]. Then we show that when u_{i} is a generator of $H^{*}\left(\mathrm{GL}_{3}(Z)\right)$, its reduction \bar{u}_{i} is in the algebra generated by the elements u_{i}^{\prime} (compute in H and H^{\prime}). Finally we see that the elements $\beta_{2}\left(u_{i}\right)$ generate $\operatorname{Ker}\left(H^{*}\left(\mathrm{GL}_{3}(Z)\right) \xrightarrow{\times 2} H^{*}\left(\mathrm{GL}_{3}(Z)\right)\right)$ as a module over $H^{*}\left(\mathrm{GL}_{3}(Z)\right)$.

Theorem 3.4. (ii) For $l=2$ and $p \equiv 1(\bmod 4)$ we have

$$
r_{p}^{*}\left(e_{i}\right)=0, \quad 1 \leq i \leq 3
$$

For $l=2$ and $p \equiv 3(\bmod 4)$ we have

$$
\begin{aligned}
& r_{p}^{*}\left(e_{1}\right)=u_{0}^{\prime} \\
& r_{p}^{*}\left(e_{2}\right)=u_{3}^{\prime}+u_{4}^{\prime} \\
& r_{p}^{*}\left(e_{3}\right)=u_{1}^{\prime} u_{3}^{\prime}+u_{1}^{\prime} u_{4}^{\prime}
\end{aligned}
$$

Sketch of the proof. To get $r_{p}^{*}\left(e_{1}\right)$ we restrı : this class to $Z / 2 Z$ and ase [1, Proposition 3(ii)].

The representations $H \rightarrow \mathrm{GL}_{3}\left(F_{p}\right)$ and $H^{\prime} \rightarrow \mathrm{GL}_{3}\left(F_{p}\right)$ are isomorphic to $\psi=$ $\varphi(\operatorname{det} \varphi$ as in Theorem 3.2. By [1, Proposition 3(ii)], we have

$$
e_{2}(\psi)=e_{2}(\varphi) \quad \text { and } \quad e_{3}(\psi)=c_{2}(\varphi) e_{1}(\operatorname{det} \varphi)+e_{2}(\varphi) c_{1}(\operatorname{det} \varphi)
$$

Using [1, Proposition 3(ii)], we get

$$
e_{1}(\varphi)=e_{1}(\operatorname{det} \varphi)=\frac{1}{2}(p-1) s_{2} .
$$

By restricting $e_{2}(\varphi)$ to the subgroups $\langle a\rangle,\left\langle a^{2}, b\right\rangle$ and $\langle a b\rangle$ of J_{4} we get $e_{2}(\varphi)=\frac{1}{2}(p-1) w s_{2}$. We deduce

$$
e_{2}(\psi)=\frac{1}{2}(p-1) w s_{2} \quad \text { and } \quad e_{3}(\psi)=\frac{1}{2}(p-1)\left(w^{2} s_{2}+w s_{2}^{3}\right) .
$$

Since $e_{i}(\psi)=r_{p}^{*}\left(e_{i}\right)\left|H=r_{p}^{*}\left(e_{i}\right)\right| H^{\prime}$, these relations detrs nine $r_{p}^{*}\left(e_{i}\right)$.

References

[1] D. Quillen, On the cohomology and K-theory of the general linear group over a finite field, Annals of Math 96 (1972) 552-586.
[2] J.-P. Serre, Représentations linéaires des groupes finis, 2nd ed. (Hermann, Paris, 1972).
[3] C. Soulé, The cohomology of $\mathrm{SL}_{3}(Z)$, Topology 17 (1978) 1-22.
[4] C. Soulé, Classes de torsion dans la cohomologie des groupes arithmétiques, C.R. Acad. Sci. Paris (Série A) 284, 1010.
[5] M. Tezuka and N. Yagita, The $\bmod p$ cohomology ring of $\mathrm{GL}_{3}\left(F_{p}\right)$, J. of Algebra, 81 (1983) 295-303.

